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ABSTRACT

A computational method for the prediction of the three—dimensfona]
viscous-flow pressure distribution over finite wings has been developed.
In this methodz a three-dimensicnal botential-f]ow computer program was
combined with a two-dimensional swept-wing viscous-flow computer program
using strip analysis. A 1- by 3-meter semispan wing of taper ratio 1
with NACA 0012 sections was used as a test case for the method. An
experiment was also performed as part of a larger investigation to
provide surface pressure data for a comparison with the theoretical
results. .

Results of the inyestigation indicate, that by considering only
camber effects in the airfoil modification technique, the strip method
approaéhed a limiting value of total normal-force coefficient in three
iterations in the absence of flow separation. However, if flow
separation did occur in the boundary-layer development calculations,
the airfoil modification-method proved to be inadequate.

Generally, if no separation of the flow occurred in the boundary-
layer development calculations, the strip method demonstrated good
agreement with experiment at the inboard semispan stations and approached
a limiting ya]ue of total normal-force coefficient within three to

five iterations.
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CHAPTER I
INTRODUCTION

At present, there are several two- and three-dimensional swept-wing
viscous-flow programs and several three-dimensional potential-flow
programs available to the aerodynamicist (Refs. [1] to [4]). Such
programs are being used for the design and analysis of finite wings.

In the case of three-dimensional potential-flow programs, the viscous
effects present in real fluid flow are not accounted for; therefore,
these programs tend to overpredict the pressure distribution and hence
the 1ift of tHe wing. Accurate prediction of the pressure distri-
bution is necessary to compute the boundary-layer development and profile
drag of the wing. Therefore, there has been increasing effort in recent
years to develop techniques which will account for the viscous effects

of the boundary layer on the pressure distribution.

- One such technique is the combining of a two-dimensional swept-wing
viscous-flow program with a three-dimensional potential-flow program
utilizing a “strip method". The strip method involves computing the
three-dimensional surface pressure distribution over a finite wing and
then dividing it into a number of chordwise 'Strips." The surface
pressure distribution for each strip is then used to drive the two-
dimensional swept-wing viscous-flow program. Each strip is thus treated

as an infinite wing. After the boundary-layer development for each



strip is calculated, a new airfoil geometry is determined using the
resulting displacement thickness. It was Prandtl who first suggested
modifying the airfoil geome;ry by adding the boundary-layer displacement
thicknesses to the original geometry to account for the displacement of
the potential-flow stréamlines‘by thg boundary layer. The new geometry
of the various strips is then used as input to the three-dimensional
potential-flow program to cdmpute a new surface pressure distribution.
This process can be repeated until convergence is obtained.

The objective of this investigation was to combine one such three-
dimensional potential-flow program (Ref. [1]) and two-dimensional swept-
. wing viscous/potential-flow program (Re%. [2]) in a strip method. These
two computer programsvwere selected because of their availability to
the author and their computational efficiency.

An experiment was also performed as part of a larger investigation
tQ pro?ide experimental data for validating new three-dimensional

viscous-flow methods (Ref. [5]).

-

h]

In this experiment, a 11 by 3-meter'sem§span wing of taper ratio 1}
with NACA 0012 sections was tested in the Langley V/STOL tunnel to
measure the surface pressure distribution at several sweep angles
through an angle-of-attack range of -6° to 20°. These experimental
surface pressure distributions were used in this investigation as a means
of verifying the strip method results.

During this investigation, an adequate convergence criterion was
not estabfished for the strip method; therefore, an arbitrary number of

five iterations was performed and comparisons with the experimental



data were made. Results indicated that in most cases five iterations

were more than enough to 6btain good agreement with the data of

Reference [5].



CHAPTER II
METHOD OF ANALYSIS

Description of the Strip Method

A flow chért for the strip method is given in Figure 1. User
input data such as geometry and free-stream conditions are read in by
the three-dimensional potential-flow program (DERIV) and stored off on
random access files. A brief description of this program taken from
Reference [1] is given in Appendix A. After the potential-flow pressure
calculations are completed, sfagnation point locations are calculated
for each strip in subroutine STAG by simply scanning the pressure
coefficients and determining the x/c location of the largest value.
Because of the differing geometry requirements of DERIV and the viscous/
potential-flow program (VIP) of Reference [2], the pressure coefficients
must then be interpolated to obtain values perpendicular to the leading
edge. This is accomplished in subroutine INTRP using conventional, |
first order, Lagrangian interpolation and a coordinate system transfor-
mation as shown in Figure 2. In the case of a configuration with zero
sweep, INTRP iS bypassed since the pressure dfstribution is already
perpendicular to the leading edge. Section and total normal-force
coefficients are then computed by integrating the preSsure distkibutions.
Integration is accomplished in subroutine INTEG using a cubic spline

under tension. The pressure coefficients and x/c locations for the



various strips are then used as input to the integral boundary-]ayer
calculation method (IBL) of VIP. A brief description of this program
taken from Reference [2] is given in Appendix B. IBL then calculates
the boundary-layer development perpendicular to the leading edge of the
airfoil for each strip and subroutine PRINTER prints the resulting
boundary layer, displacement, and moﬁentum thickness developments, and
shape factor, crossflow angles, skin-friction coefficient, and velocity
profile developments versus x/c. Subroutine BLPLOT then plots the
surface pressure distribution and upper and lower surface displacement
thickness developments versus x/c.

The next four subroutines (INTRP1, GEOMAD, SMOOY, and GRADNT)deal
with the computation of a modified airfoil geometry and constitute the
most important step in the iterative process of the strip method. The
selection of an adequatg airfoil geometry modification mefhod that will
1nsure‘convergence in a reasonable number of iterations is of utmost
importance in terms of computer time and efficiency. In this investiga-

ftion, the airfoil geometry was modified by computing effective bbundary—
layer displacement thicknesses for each strip and then adding them to
the original camber line of the strib. The effective boundary-layer
displacement thicknesses, G*total’ were computed using the following

proportioning technique to prevent over-correction during the initial

iterations:
(sftOtal)i = (8*avels | for i =1 (1)
(8% otan)i = 273 (8%3,0); + 13 (8%,0); fori=23,4,... (2)



where

(6

favely = 12 (&% %) for i = 1,2,3,... (3)

and i = iteration number.

The addition of the §*4ota) S to the original camber Tine of each

. stfip of the airfoil nas tﬁe effect of "uncambering" the airfoil

as shown in Figure 3. "Thii uncambering effect can result in very steep,
positive gradients of the’éamber line at the trailing edge. Because of
this, the following formu]é was used to limit the slope of the camber

line near the trailing edgé:
Camber s]obe limit = .1875 o + .125 (4)

where a 1is the angle of attack in degrees. The boundary layer tends
to produce the effect of uhcambering and reducing the angle of attack

of the section which decreases the 1ift. Also, the boundary 1ayef tends
to produce the effect of tﬁfckening the airfoil thereby causing an
increase in local surface velocities. The mégnitudes of these effects
are shown in figure 4 where section normal-force coefficients for a
NACA 0012 wing for a range of angle of attacks have been plotted. These
values were obtained after five iterations of the two-dimensional,
viscous-flow program of Reference [6]. This éomputer program uses a
similar technique to modify the original airfoil to account for the
viscous effects of the boundary layer and includes thg perturbatioﬁ -

velocity effects due to thickness as well as to lift. In Figure 4, the

circles represent the potential-flow values of the section normal-force



coefficient, while the squares and diamonds represent the section. CN‘s
considering only camber and camber plus thickness effects, respectively.
- It can be seen that the perturbation velocity due to the camber effgcts
alone account for most of the sectional normal force. The effect
of the boundary layer on the basic thickness of the NACA 0012 airfoil
is thus of secondary importance and therefore was not included in the
present investigation. |

As shown in Figure 1, subroutine INTRPT interpolates the displacement
thicknesses to locations on the wing which are parallel to the free-
stream flow, using fifst order Lagrangian interpolation. This interpo-
lation is necessary to obtain.va]ués ofkthe disp1acement thicknesses
which are compatible With the geometry requirements of DERIV. Subroutine
INTRP] is divided into two parts. The first part takes the calculated
values of the displacement fhicknesses from IBL and interpolates to
obtain Qa]ues perpendicular to the leading edge at the user specified
control point locations. The second part then interpolates these values
to locations on the wing which are parallel to the free-stream flow
direction. This second part is bypassed for a configuration with zero
sweep. It should be noted that whenever any interpolation is performed
the original'x/c and spanwise spacing, input by the user, is preserved.
After the displacement thicknesses have been interpolated to locations
compatible with the geometry requirements of DERIV, subroutine GEOMAD

is called and computes the &* 's for each strip at each of the

total
specified x/c locations. These displacement thicknesses, which form the

new camber lines of each strip of the airfoil, are then smoothed twice



using a standard least squares smoothing technique and plotted.
Subroutine GRADNT then computes the slopes of the smoothed camber lines
using finite difference techniques. The program then tests to see if
the number of user-specified iterations have been completed. If they
have not, the computed slopes for each camber line are used as the new
geometry input to DERIV. Al1 other éeometry and free-stream flow infor-
mation input by the user remains the same. The entire process is then

repeated until the required number of iterations is completed.

~ Limitations of the Strip Method

Currently, this method is limited to configurations with one
component (that is, no s]ats'or flaps), although there are plans to
extend its capability to include multi-element configurations using an
alternate potential-flow program (Ref. [4]). The program is limited to
angles of attack below that angle where turbulent separation occurs in
the integral boundary-layer calculation method (approximately 10° at 40°
sweep) and only one angle-of-attack case can be run at a time. Since
this program is a pilot code to demonstrate the potential value of a |
strip method in predicting the three-dimensional flow properties of
finite wings, the program has not been cptimized, and consequently, it
is inefficient and requires approximately 80 seconds of CPU time per
iteration on the CfBER 175T computer. (This time is based on a
configuration modeled with 20 chordwise subpanels and 10 spanwiée

subpanels.)




CHAPTER III
EXPERIMENTAL INVESTIGATION
Test Procedure

An experimentai investigétion (Ref. [5]) was conducted to provide
pressure distributions on a l-lby 3-meter semispan wing with taper
ratfo of 1.0 at various sweep angles. The semispan pressure wing was
tested in the Langley V/STOL‘tunne]‘at five different sweep angles
(Of to 40°) and through an angle-of-attack range of -Gf to ZQ°.
Pressure data were obtaingd at 600 pressure tap locations with 60
pressure taps distributed at each of 10 spanwise stations. The semi-
span wing was tested at free-stream dynamic pressures of 1.44 kN/m2
and 2.39 kN/m2 with a corresponding Reynolds number based on a 1-meter

chord of 3.36 x mf'and 4.27 x 108, respectively.

Description of Model -

The semispan wing model was constructed with NACA 001? airfoil
sections. The NACA 0012 airfoil section was selected because of its
good low- and h%gh-speed performance characteristics and because of the
available of additional test data over a wide range of test conditions
(Refs. [7],[8],and [9]). qurdinates of the NACA 0012 are given in
Re%érence [7] and are also presented in Table I at the design pressure
tap.locations. A schematic drawihg of the model and support system is shown

in Figure 5. The range of sweep ang]eé, 0° to 40°, was made possible by

9
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the movement in the pitch mechanisms ofithe model support system with
the addition of one of two wedge blocks (12° or 33?) at the wing root.
Values of wing span and aspect ratio for the wing at different sweep
angles are presented in Table II. The wing slot inserts prevented flow
through the reflection plate. The Qing tips were kept parallel to the
‘free sfream as the wing was swept by attaching appropriate wing-tip
fairing. These tip fairings did not contain static pressure taps.

The spanwise locations of the pressure taps are presented in

Table III and were determined by the following equation for A = 0°:

n = .05+ .95 cos[TT 126k)] 0<k<9 | (5)

where k 1is the station number starting near the wing root. This dis-
tribution allowed for a concentration of pressure taps at the outboard
portion of the wing where the pressure gradients are the largest.

A circular reflection p]ate'with a dfameter of 3.05 m was
added to the model to simulate a full-span wing and to shield the model
from the influence of the tunnel wall boundary layer.

The wing model was fabricated by covering a solid aluminum spar with
a fiber-glass skin. The pressure tubings were embedded in the fiber-
glass skin and routed to a set of scaniva]ves.attached to the sting
mount below the reflection plate. A transition strip was installed on
the upper and lower wing suffaces at 0.05 x/c. A1l theoretical results
were tripped at the same x/c location. A photograph of the model in the

Lang]ey V/STOL tunﬁe] is shown in Figure 6.



CHAPTER 1V

PRESENTATION OF RESULTS

Theoretical boundary layer and surface pressure distributions were

obtained for a 1- by 3-meter semispan wing with NACA 0012 airfoil

sections over a range of sweep angles from 0° to 40° for an angle-of-

attack range of 0° to 9°. Because of the large volume of data, only

eight cases are presented'with tabulated results omitted. These eight

cases are compared with experimental results (Ref. [5]) and are

presented as indicated in the following table:

Surface Pressure and Displacement

Thickness Distributions

. ‘ qco M
Sweep | Angle of 2 o .
Angle, | Attack, (kN/m®) Figure
deg deg Theory | Data Thepry Data
Q 2.53,6.75 | 239 | 1.44 A8 [ .14 ] 7,910
8.85 ' 1 - )
2Q 6.76,8.84 2.39 | 2.39 -18 1 .18 [ 13,15
40 2.48,6.65 | 2.39 | 1.44 18 | .14 | 17,19,21
' 8.73

The theoretical value of the Reynolds number was 3.97 x 105 based on a

wing chord of 1 meter.

11



12

The results are plotted using a format of four graphs per ﬁemispan
station. The first graph is a plot of pressure coefficient versus x/c.
Experimental values of pressure coefficfent are plotted along with the
theoretical values for five iterétions. Below this graph, the displaﬁe-
ment thickness developments for the upper and lower surfaces of the strip
are plotted in terms of z/c versus x/c for five iterations. IBL
calculates the displacement thickness development for each surface of
each strip at 200 values of x/c. For purposes of graphical clarity,
only every fourth point is plotted. The bottom graph is a plot of the
camber line z/c values versus x/c location for six iterations. It should
be mentioned that only the camber line is plotted for the sixth iteration
as a further indication of the numerical stability or instability of the
strip method. In the symbol key, the open circles represent the first
iteration or potential-flow solution (that is, neglecting viscous
effects), and the other symbols represent successive iterations which
include the effects of the boundary layer. Due to the scale of the
plotted results, the different symbols are difficult to distinguish.

A summary of the theoretical results is presented in the even-
numbered figures 8 through 22 where the total value of the normal-force
coéfficient is plotted versus iteration number, and the normalized
section normal-force coefficients are plotted for every iteration
versus semispan iocatioh. Experimental results from Reference [5]

are plotted on the latter graph for a comparison. :
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A1l results are plotted perpendicular to the leading edge of the
wing. For a nonzero sweep case, the plotted values of pressure
coefficient have been interpolated from. their corresponding streamwise

values using first order Lagrangian interpolation.



CHAPTER V
RESULTS AND DISCUSSION

In most cases presénted, the strip method approached a limiting
value of total normal-force ;oéfficient after five iterations, and
the final iteration results were not much different from the initial
iteration results. In fact, the initial iteration results (that is,
not including boundary-layer effects) agreed very well with fhe data in
most cases. One reason for this may be due to the fact that the configu-
ration run in the étrip program was a symmetric airfoil with no twist,
taper, etc. More complicated configurations (for example, a supercritical
section) could very well yield more dramatic results. Another reason
could be due to the linearized boundary conditions of the potential-flow
program. This approximation results in a lower calculated value of the
surface velocity which results in a lower value of the pressure
coefficient. Figures 8, 10, 12, 14, 16,‘18, 20, and 22,
where the total normal-force coefficient is plotted versus
iteration number, demonstrate that the strip method approached a Timiting
value of CN after three iterations in most cases. HoweYer, in the
absence of flow separation in the boundary-]ayer development calculations,
the strip method approached a limiting value of CN even sooner
(Fig. 22). If separation does occur, the displacement thicknesses

must be extrapolated to the trailing edge. This can lead to unpredictablé

14
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camber line calculations and oscillating pressure distributions. This
effect can be clearly seen in Figures Z(g), 7(h), 9(d), 9(e), 11(q),
11(h), and 13(d) where separation is evident in the random values of the
diip]acément thicknesses near the trailing edge. Since the airfoil
modification method employs a proportioning technique using present
and previous iteration values of the displacement thicknesses, this
effect can be transmitted to succeeding iterations and is evident in
the previously mentioned figures.

Poar agreement with,experihent in section normal-force coefficient
as computed by the strip method for éases with 40f sweep (Figs. 18, 20,
and 22) can be attributed to the interpolation of the pressure coeffi-
cients. In all cases, the experimental section normal force is
dgcreased near the root by the ineffectiveness of the reflection plate.
IhiS'result indicates that the reflection plate was not large ehough
to fully reflect the properties of a full-span wing. The wing-tip
vortex flow is evideﬁt from the increase in trailing-edge suction
pressure in the éxperimenta] surface preséﬁre data in Figures 9(h)
and 11(h).

Poor agreement with experiment in surface pressure distributions
as computed by the strip method at low angles of attack can be attri-
buted to the inaccuracy of the potential-flow program in taking into

account the spanwise component of flow near the leading edge (Fig. 17).
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Genera]ly, if no separation of the flow occurred in the boundany%
layer development calculations, the strip method demonstrated good %
agreement with experiment at the inboard semispan stations and approached

: _ a limiting value of total normal force coefficient within three to

five iterations,




CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

A computational method for the prediction of the three-dimensional
.viscous—flow pressure distribution over finite wings has been developed.
A 1- by 3-meter semispan wing of taper ratio 1 with NACA 0012 sections
was used as a test case for the method. An experiment was also performed
as part of a larger investigation to provide data for a comparison with
the theoretical results. Results of the investigation indicate, that by
considering only camber effects in the airfoil modification fechnique,
the strip method approached a limiting value of total normal-force
coefficient in three iterations in the absence of flow separation.
However, if flow separation didAoccur, the airfoil modification method
proved to be inadequate. Two possible solutions to this problem are:
(1) modifying the integral boundary-layer calculation method to compute
through separation to the trailing edge and (2) devising a new airfoil
modification method altogether.. One such alternate method would be the
calculation of a source distribution as a function of the displacement
thicknesses to fepresent.the boundary layer. This approach has the
added advantage of being computationally faster than the method used in
this investigation.

In the future, any strip methbd should use potential- and viscous-
flow programs that have similar géometry input so that no interpolation

of the input and output is necessary. Execution time and overall

17
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accuracy of the results would thus be enhanced. A potential-flow
program such as Reference [4] would also be much better because it
satisfies the boundary conditions on the surface of the airfoil instead
of on the chordal plane.

The stagnation point location technique in the strip method is very
‘dependént on the number of chordwise control points used to solve for
the boundary conditions. Therefore, a more accurate technique should be
devised. Adequate convergence criterion also needs to be defined.
Testing the difference in.total normal -force coefficient for two
successive iterations and setfing a Tower limit on this differénce is

“one such criterion that may be promising.



i APPENDIX A
DESCRIPTION OF THE POTENTIAL-FLOW PROGRAM

General Description

Eﬁhe potentia]-f]ow program of Reference [1] is an analysis method
for éhe prediction of the static aﬁd rotary stability derivatives for a
compfpte a{rplane configuration. The perturbation flow about the
confi%uration is represented by a grid of quadrilateral vortex and
horsééhoe vortex and source singularities. Surface pressures and
integrated section and total loads and moments are computed. Subcritical
compréssibility is accounted for by means of the Goethert similarity rule.

A smaller version of this program, for the computation of the
surface pressure distribution over a wing only, was used in the present
investigation since the study ofithe flow over finite wings add computing
efficiency were of prime interest. Because of this, only the method ‘and
feqturés of the program relating to the potential-flow pressure
distribution calculations over a finite wing will be discussed. The
program is primarily written in FORTRAN IV (several sections are written
in Compass Assembly language to minimize CPU'fime) for the CDC 6000
series computers. It uses 71,000 octal words of storage and operates

+

in the overlay mode.

-

19
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Wing Alone Version Description

The wing is diyided intd a number of subpanels with a typical source
and vortex lattice grid as shown in Figure23. Wing singularities are
placed on the chordal plane instead of the external surface of the wing.

After the coordinates of the subpanel corner points are calculated,
‘the coordinates of the source and vortex lattices, used to represent the
perturbation velocity due to thickness and 1ift, respectively, are
determined. The wing bound vortices and contro]'points are placed on
the quarter and three-quaiter chord pf the subpanels, respectively. The
'trailing edges of the horseshoe vortices are ptaced along the subpanel
side edges and are straight lines in the X-direction going off to
infinity. The source strengths I are defined by the change in thick-

ness over that portion of the subpanel it represents, so that

2\/1-M2 Z. V.

I . w t X
Vo /1'+ (tanh)2 Ve (6)
1-Mm2 . '

where A s the sweep of the source line and V& is the total free-

stream onset velocity in the X-direction. The horseshoe vortex strengths
r must be solved for utilizing the boundary condition that a minimum

of flow passes through the chordal surface of the wing panel at a

finite number of control points. In order to satisfy this boundary
condition, the total flow due to all the singularities and the free-
stream onset flow is summed at each control point, and the scalar product
of this sum is minimized. This reéu]ts in a set of linear aéfodynamic
influence equations which are solved foﬁ the unknown vortex strengths

using Householder's method.
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The influence equations are given by:.

W - - M

where [A] 1is the aerodynamic influence matrix. The vector {e} is the

<|"’1

flow thrdugh the mean camber surface of the wing at the control points.
This vector is zero for a discrete point solution (same number of
unknowns as equations). Each element of the above aerodynamic influence
matrix is associated with the influence of a singularity on a control
+ point. The singularities.and control points are ordered such that all
of the longitudinal stations for the first lateral station are considered
first, and then all the longitudinal stations for the second lateral
station are considered second, etc. The longitudinal stations start at
the leading edge of the wing and go toward the trailing edge; the
lateral stations start at fhe root of the wing and go toward the tip.
The velocity tangent to the wjng surface in the longitudinal

direction is given by:

| 1
v 1 | 2 z
my = |- —=| |(1-1?) [s] 3——(]
(V')mn az, dz |2 |'/° [ N Ve

[] * (Hta"ZA)mn HYIiﬁ'g/mn

-

.o b= bl ]

y

where



r rb - r- -
mn = -
L
@ﬂ) “13 - 1 i * M1
« /mn = 1 + 8, + =% 3%, +%
_4 M(m—l)n an 4 M(m+1)qJ Mo 2M(m+1)nJ
i r 2 T |
+4 ( b(M+1)l//ahD Man
R 1 - g
= 2 + 2 + = 2 .32 + 9
3 M ) M M
i Man (m+1)n M(mf2)n mn (m+1)n
. ZT Yl_ )
| T Yo By
V. — |7
(X/C) (1-X/C) ‘[1 + %MQT
1-M

and where X/C 1is the local percent chord and iﬁ is the length of the

subpanel in the longitudinal direction.

(10)

The velocity tangent to the wing surface in the lateral direction

is given by:

-

mn

1.
z

(1 + (1+tan2A)mn (dx—t

[N

t

.

7 72|
2
dx / mn

M

R i
41 - M;Z [@'?)m} {1} +[\J 1+tan2Amn] [TTYJ

where [SX] and [SY] are the influence matrices

defined by the

components of perturbation velocity induced by the unit strength sources

in the X- and Y-directions, respectively, and
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¥ An An -
I (h-~3) I; (n+35)

Tm 2 Tm 2

AV . V , v aVy,
v.;_. = ? — R + E w7 + v taniA -
" &%T ( Tin 2Tm(n+1 )_ '

where E& is the length of the subpanel in the lateral direction.
Note, in equations (8) and (11), the top sign is used to compute
the velocity on the upper surface and the bottom sign the lower surface

in those terms which have a p]us‘and minus in front.

The surface pressure coefficients at each of the control points on

the wing are then computed using the foi]owing expression:

2 2
Vv v
1 +X5—]-Mw2 [1 - (VM') - (VI‘) ]
% /mn oofmn

where Yy 1s the ratio of specific heats.

o2
G =5

mn YMmz

(13)



APPENDIX B
DESCRIPTION OF THE VISCOUS-FLOW PROGRAM

General Description

The viscods/botentia]-flow program of Reference [2] is composed of
a two-dimensidna], boundary-layer segment and a two-dimensional potential-
flow segment. A brief description of the complete program will be given
followed by a detailed description of the two-dimensional, integral
approach used in the viscous-flow segment since this approach was used
in the present investigation. ‘

The program can handle at most a configuration composed of four
elements (that is, a slat, main component, and at most two flaps, slotted
or unslotted). A1l program input and output are in the normal chord
direction, that is,perpendicular to the leading edge.

The two-dimensional potential-flow segment employs a vortex-lattice
surface singularity technique. The airfoil is approximated by a number
of planar segments with the endpoints located on the actual airfoil
surface. A triangular distribufion of vorticity is then placed on the
ubper and lower surfaces as indicated in Figure24 (taken from Ref. [2]).

The viscous-flow segment uses either a finite differencing or
integral boundary-layer technique depending on the configuration region.

The boundary-layer development of the main component and all lower

surfaces are computed using an integral approach, while slot regions are

24



25

computed via finite difference methods as shown in Figure25 (takén from
Ref. [2]). The viscous/potential-flow interaction is accomplished by
calculating a source distribution as a function of the displacement
thicknesses and pressure distribution. This source distribution is then
included in the second calculation of the potential flow and represents
the effect of the boundary layer in the modification of the potential
flow. This procedure is reﬁeated until convergence is obtained.

The program is written in FORTRAN IV for the CDC 6600 and 7600
series of computers. It uses 100,000 octal words of storage and

operates in the overlay mode.

Integral Boundary-Layer Method Description

The beoundary-layer development is calculated from the stagnation_
line back to the trailing edge for eéch surface of the configuration and
is divided thus: (A) Laminar Development, (b) Instability and Trénsition
Calculations, and (c) Turbulent Development.

Laminar Development. - The laminar boundary-]ayer calculation is a

modified Thwaites method (Ref. [10]) using a two-dimensional integral
approach along external streamlines. In Thwaites method, the momentum

integral equation
de/dx' = Ce/2 - (H + 2) 8/U (dUydx") (14)
is written in the form:

d/dx' (K/U) = L/U ' (15)



26

where

= 62/i (dy/dx")
[2 - K (H.+ 2)1 : (16)
6/u (au/ay")y =0

K
L
L

To determine the relationship between L and K, Thwaites used exact

solutions to a variety of laminar flows to obtain

L = 0.45 - 6K | (17)

Curle (Ref. [11]) suggested a modification of equation (17) since it was

shown to be inadequate in flows approaching separation:
L = 0.45 - 6.K + g(K,u) (18)
where |
= K2 U (d U/dx'z)/(dU/dx')2 (19)

If equation (18) is substituted into equation (15) and integrated, the

following is obtained

X
0% = 0.45 V/uf’f (1 + 2.22g) U® dx' (20)
Q : '

With g initially equal to zero, equation (20) is easily solvad by
jteration. At each step of the calculation, the shape factor H can be
determined using equation (16). Then with the aid of equation (20), the

displacement thicknesses can be calculated by
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§* = Ho (21)

The calculations proceed until laminar separation occurs or until
~the end of the airfoil is reached. Thé boundary-layer development is
then searched to determine if transition or separation has occurred, in
which case the flow is'assumed to be turbulent.

Instability and Transition Calculations. - Boundary-layer

instability and transitionare not well understood, and there is as yet
no reliable thecretical method for their prediction. It is known,
however, that a boundary layer becomes unstable when small disturbances
are permitted to grow. The amplication. of these disturbances causes the
flow to become turbulent. Granville (Ref. [12]) has developed an
empirical procedure based on determining the neutral stability and
transition points. The neutral stability point is defined as that point
downstream of which small disturbances are amplified within the bogndary
layer. This point is reached when the Reynolds number based on local

flow'properties reaches some critical value ‘RINS' Schlicting and

Ulrich (Ref. [13]) have correlated RINS with the local pressure

gradient parameter

K = 6%/v (du/ds) - (22)

Correlations of K by Smith (Ref. [14]) and others were reduced to

analytical form as follows:

K = -0.4709 + 0.11066/InR,- 0.0058591/|n2R
, . 0 7]

for 0 < R6 < 650 (23)
INS
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K = 0.69412 - 0.23992/InR,+ 0.0205/In2R,

for 650 < R, < 10,000 (24)
INS

For a given Re, if the calculated va]ué of K is greater than thét,

détermined by the boundary-layer development, the flow has passed from a

stable to an unstable region and the transition process begins.
Granville has developed. a similar correlation to determine the

transition point by defining an average pressure gradient parameter

fstrans
S

'l-(- =. ins KdS

Strans ~ Sins (25)

or expressed analytically:
K= -0.0925 +7.0 x 107° R, for 0.< R < 750 (26)

. trans '
K= - 0.12571 + 1.14286 x 10°* R, for 750 < Rg < 1100 (27)
. Y trans
and

K = 1.59381 - 0.45543/InR, + 0.032534/In%R, (28)

for1100 < Rg, . < 3000

When the calculated value of K for a given Re is greater than that
value given by the boundary-layer development, transition is predicted

and the turbulent boundary-layer calculations begin.

¢
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Turbulent Development. - The turbulent bo@ndary-layer calculation

method is the method of Cumpsty and Head (Ref.i[ls]). This method uses
an orthogonal curvilinear system of coordinates?based on the projection
of external streamlines on the surface of the airfoil. In this system,
streamwise turbulént boundary 1ayer'profi1es re§emb1e two- dimensioné]
-profiles. Therefore when the streamwise prof1]es are known, the cross-
flow profiles can be determined as functions ofnthe streamwise profiles
and the angle between the surface streamline and the projection of the
external stream11ne on the surface (the angle ¢Q

Cumpsty and Head wrote the streamwise and crossf]ow momentum

equations as follows:
Streamwise Momentum Equation

f C
20 301, 12U £
1 12 s 3p _ 2 1 ,
s Ko Tgges BT M fut s (617 - 8p) k== (29)

Crossflow Momentum Equation

39- 96 ol 3U
21 22 2 s _k .
5s " K3 tUses 21 T U 8s (1) + ezz}c 2k 32 o,
~f
30
f2 @)

where k = tanp, and

. 14 1, 4
0y = 073 J(H) tane s I(H) = - (4 + W) [ - T ¢zt T A
1 2 1
62] = en E(H) tan(b; E(H) S = (H + H'l) [H- - H+'| + H+2
| 1 L6 4,
622 = e]] C(H) tand); C(H) = - (H + H ) [H H+‘| H+2 = H+3 H+4

(31)



- 30

This system of equations contains more unknowns than equations; hence
further relationships are required.
The needed relationships are obtained by using Cumpsty and Head's

entrainment equation:

3(2;61".’) . kagg* = F () + (8-6p%) (ki’% - %;25) (32)
where Hy = (6-8%11/0¢4
&% = 8, D(H) tang ; D(H) = - (H + 'H]) & -mst 2]
F(Hy) = exp [-3.512 - 0.617 In (H} - 3)], N
(33)
and Thompson's two parameter skin-friction law (Ref. [16]):
cf].= f (H,Rg) (38)
and is-given by
Cs = exp (A + HB) (35)

i

where

A = 0.01952 - 0.3868 Z + 0.02834 7% - 0.0007 23

n

B = 0.19151 - 0.8349 Z + 0.06259 Z% - 0.001953 Z°

Z. lﬂ RO . ] (36)
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The crossflow skin-friction coefficient C. is then determined from
2

the streamwise skin-friction coefficient Cf] by

sz 3 Cf]'tan¢ (37)

and the resultant skin-friction coefficient Cs by

Cs

Ce, oG (38)
With the initial values of 6, and Hy known from the laminar
equations or stagnation line initial conditions, equations (29), (30),
and (32) are then integrated. The calculation procedure continues until
the sum of therangles p and ¢ reaches 90°. The angle p 1is defined
as the angle bétween the external streamline and wing normal chord. The
angle ¢, as previously defined, is the angle between the surface stream-
line and the projection of an exferna] stfeam]ine on the surface of the
airfoi]. When the sum of p and ¢ reaches 90°, the flow is completely
spanwise, and by definition, separation has occurred. The calculations
are then stopped and a message is printed indicating the occurence of

turbulent separation.
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TABLE I

DESIGN CHORDWISE LOCATION OF STATIC PRESSURE TAPS

ON SEMISPAN WING MODEL

z/c z/c
x/c Upper Surface Lower Surface
0.0 0.0 0.0
.001938 .007786 -.007786
.005101 . .012371 -.012371
. 008412 .015751 -.015751
.012003 .018643 -.018643
. 015533 .021081 -.021081
. 020164 .023692 -.023692
. 026691 . 026927 -.026927
. 043k4L9 03347k -.0334Th
. 068029 .0c40393 -.040393
. 096415 . 046215 -.0Lk6215
127694 .050912 -.050912
.161629 . 054573 -.054573
.197963 .057260 -.057260
.236335 .059018 -.059018
. 276981 . 059893 -.059893
.319k22 .059933 -.059933
.363751 .059168 -.059168
410335 .057631 -.057631
458507 .055365 -.055365
.50898L .052366 -.052366
.561119 . 048693 ~.048693
.615491 044342 -.0LkLk342
671552 .039352 -.039352
.7281.90 .033838 -.033838
. 785998 027770 -.027770
. 843881 .021246 -.021246
.900483 . 014420 -.0Lh420
.956240 .007242 -.0072k42
.99619 .001260 -.001260
1.0000 0.0 0.0 '




TABLE 11

Wing Span and Aspect Ratio for Semispan
Wing Model at
Different Sweep Angles

Sweep | b/2, m| AR
© | 2.95 | 590
10° | 2.98 | 5.87
200 | 2.91 | 5.47
30° | 2.83 | 4.90
a0’ | 2.53 | 3.88




TABLE 111 - Spanwise Location of Static Pressure Tap Rows
On Semispan Wing Model

e .o e e s e o P 7

SOC PPN S

Pressure station (A= 09 |

.05

. 1986
. 3436
.4813
. 6084
. 1218
. 8186
. 8965
. 9539
. 9883
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Figure 2. - Coordinate system transformation for the interpolation
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Figure 4. - Effect of camber and thickness on section normal

force coefficient for NACA 0012 airfoil.
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Figure 5. - Schematic drawing of semispan wing model.
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Figure 9. - Pressure distributions, displacement thickness, and camber

line developments for five iterations of the strip method.
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